.

Джиттер Jitter

Jitter - дрожание (быстрые колебания) фазы синхросигналов в цифровых системах, приводящее к неравномерности во времени моментов срабатывания тактируемых этими сигналами цифровых устройств. Сами по себе цифровые устройства нечувствительны к таким колебаниям, пока они не достигают значительной величины по сравнению с общей длительностью импульсов, однако в "пограничных" устройствах, находящихся на стыке цифровой и аналоговой частей схемы - АЦП и ЦАП - джиттер приводит к неравномерности моментов срабатывания компараторов АЦП или ключей ЦАП, приводящей к нарушению правильности формы аналогового сигнала. Для высокочастотных компонент сигнала дрожание фазы приводит к "размыванию" звука - нарушению субъективной пространственной локализации источников, поскольку слуховое восприятие локализации базируется в основном на фазовых, а не на амплитудных соотношениях стереоканалов. 

Джиттер может возникать из-за любой нестабильности напряжений и токов в области ЦАП/АЦП. Например, колебания питающих напряжений изменяют частоту опорного генератора, наводки на провода и печатные дорожки искажают форму цифровых сигналов. Даже если эти искажения не изменяют информационного содержимого сигнала - заключенной в нем битовой последовательности, они могут нарушить равномерность опроса входного звукового сигнала в АЦП или выдачу выходного сигнала с ЦАП и привести к искажениям формы, особенно заметной в области высоких частот.  Величина джиттера обозначает максимальное абсолютное отклонение момента перехода тактового сигнала из одного состояния в другое от расчетного значения, и измеряется в секундах. Для систем среднего качества допустимая величина джиттера составляет порядка 100 пикосекунд, для систем класса Hi-Fi ее стараются предельно минимизировать.

 Для борьбы с джиттером используется тактирование АЦП и ЦАП высокостабильными генераторами, а для подавления неравномерности цифрового потока, поступающего на ЦАП - промежуточными буферами типа FIFO (очередь). Для уменьшения влияния помех применяются обычные методы - экранирование, развязки, исключение "земляных петель", раздельные источники питания, питание критичных схем от аккумулятора и т.п. Хорошие результаты дают внешние модули ЦАП, в которых реализованы описанные методы - например, Audio Alchemy DAC-in-the-Box и другие.  Необходимо различать "пограничный" джиттер, действующий на границах аналоговой и цифровой части схемы - в области АЦП или ЦАП, и "внутренний", возникающий в любых других участках чисто цифровой схемы.  Влияние на звуковой сигнал имеет только "пограничный" джиттер, ибо только он непосредственно связан с преобразованием аналогового звукового сигнала. Весь "внутренний" джиттер при грамотном построении схемы должен полностью подавляться в интерфейсных цепях, однако некорректная реализация может пропускать его и непосредственно на ЦАП/АЦП.

 Возникающий в цепях формирования, обработки, передачи, записи и чтения цифровых сигналов "внутренний" джиттер вполне может распространяться по системе, выходить за ее пределы и переноситься между системами через цифровые интерфейсы передачи или цифровые же носители информации. При этом величина джиттера может как ослабляться, так и усиливаться. При использовании интерфейсов передачи со "встроенным" (embedded) синхросигналом, а также при чтении с любого носителя, приемная сторона вынуждена синхронизироваться с передатчиком путем использования систем фазовой автоподстройки частоты (ФАПЧ, Phase Locked Loop - PLL), которая вносит дополнительные дрожания, будучи не в состоянии мгновенно отслеживать изменения фазы и частоты принимаемого сигнала.  Один из возможных способов ослабления джиттера при передаче - использование синхронных интерфейсов с отдельным тактовым сигналом (Word Clock), а еще лучше - асинхронных двунаправленных с возможностью согласования темпа передачи, наподобие RS-232. В этом случае стороны могут не опасаться возможного опустения или переполнения буфера на приемном конце, передача может выполняться блоками с более высокой скоростью, чем идет вывод звука, а приемная сторона может использовать полностью независимый стабильный генератор для извлечения отсчетов из буфера. Однако все это имеет смысл только в том случае, когда приемник работает непосредственно на ЦАП - при записи на носитель неравномерности такой величины влияния на качество звука не оказывают.  Таким образом, в корректно реализованной системе все виды джиттера, возникающие в чисто цифровых блоках и между ними, являются "внутренними" и должны быть подавлены до передачи цифрового сигнала на ЦАП для оконечного преобразования. Это может быть сделано при помощи промежуточного буфера, схемы ФАПЧ с плавным изменением частоты генератора (медленное изменение в небольших пределах, в отличие от дрожания, практически не ощущается на слух), или каким-либо другим методом.

 Для слуховой оценки звукового сигнала его необходимо воспроизвести либо одновременно на двух разных системах, либо последовательно - на одной.  Даже если в обоих случаях сам цифровой сигнал будет одинаковым, набор сопутствующих условий - аппарат, носитель, его микроструктура, первичные сигналы при считывании информации, особенности работы декодеров, спектр аналоговых шумов и помех - почти всегда будет различен. Все эти побочные процессы могут создавать паразитные наводки, искажающие форму цифрового сигнала, порождающие джиттер, воздействующие на цепи питания и прочие аналоговые компоненты системы. В правильно сконструированных и тщательно выполненных аппаратах все эти влияния должны быть подавлены до уровня, недоступного восприятию, однако для большинства бытовых и особенно бюджетных аппаратов это не так.  Могут быть и более прозаичные причины для возникновения разницы - такие, как неустойчивое считывание цифрового носителя, при котором декодер не в состоянии однозначно восстановить закодированный звуковой сигнал и вынужден прибегать к его интерполяции, ухудшающей качество звучания.