Выходные каскады усилителей

Выходные каскады усилителей
 
Назначение выходных каскадов. Выходной каскад предназначен для отдачи в нагрузку заданной мощности сигнала при высоком кпд и минимальном уровне нелинейных и частотных искажений. Основными эксплуатационными показателями выходного каскада являются отдаваемая в нагрузку полезная мощность и кпд, качест­венными - уровень нелинейных искажений и полоса пропускания. Нелинейные искажения и кпд каскада зависят от выбора рабочей точки транзистора (электронной лампы). При большой величине сигнала нелинейные искажения в выходных каскадах на транзи­сторах возникают из-за нелинейности входных и выходных характе­ристик. При жестких требованиях к уровню нелинейных искаже­ний выходной каскад используют в режиме А, для получения высо­кого кпд - в режимах АВ и В.

Способы подключения нагрузки. По способу подключения нагруз­ки различают выходные каскады

  • с непосредственным включением нагрузки
  • резисторные
  • трансформаторные
  • дроссельные.
При непосредственном включении нагрузки в выходную цепь усилительного элемента без выходного устройства уп­рощается схема усилителя, отсутствуют дополнительные потери, а также нелинейные и частотные искажения, которые вносятся вы­ходным устройством. Недостатками непосредственного включения нагрузки являются прохождение через нагрузку постоянной состав­ляющей тока питания и невысокий кпд схемы (около 20 % в тран­зисторах и 10:% в ламповых схемах усиления).
В резисторных выходных каскадах нагрузка включа в выходную цепь через резисторно-емкостное - выходное уст­ройство. Ток питания через нагрузку не проходит, в схеме отсутству­ют дорогие громоздкие детали; обеспечивается пропускание широ­кой полосы рабочих частот. При включении нагрузки через RС-эле-менты кпд схемы мал (порядка 5 - 6 % на транзисторах и еще меньше в ламповых каскадах), поэтому такое включение целесооб­разно лишь при небольшой выходной мощности.
Трансформаторные и дроссельные выходные каскады позволяю т получить в нагрузке наибольшую неискаженную мощ­ность. При трансформаторном подключении нагрузки постоянная составляющая выходного тока не проходит через сопротивление на­грузки, поэтому .уменьшается расход потребляемой мощности пи­тания и повышается кпд. Трансформаторный каскад может обес­печить относительно высокий кпд при различных нагрузках.
Схемы выходных каскадов. Выходные каскады могут быть
  • однотактными 
  • двухтактными.
Однотактные каскады используются при относительна малых выходных мощностях, двухтактные — при больших. В однотактных схемах транзисторы работают в режиме А, в двухтактных - в режимах А, АВ или В. Наиболее экономичной является двухтактная схема выходного каскада, работающая в ре­жиме В.
В зависимости от требований к отдаваемой мощности и уровню нелинейных искажений-транзисторы в выходных каскадах могут работать с ОЭ или ОБ. Электронные лампы в выходных каскадах обычно включают с общим катодом, что позволяет осуществить возбуждение сигналов с малой амплитудой. Схема с ОЭ обеспечи­вает наибольшее усиление по мощности, однако в ней возрастают нелинейные искажения, а также неэкономичны по потреблению энергии цепи стабилизации режима. В схеме с ОБ транзисторы мо­гут работать с большим напряжением на коллекторе и иметь срав­нительно линейную переходную характеристику. Схема с ОБ поз­воляет получить меньший коэффициент нелинейных искажений и стабильный режим работы каскада при изменениях температуры, напряжения питания и замене транзистора. В схеме с ОБ велик входной ток сигнала, что требует отдачи большей мощности пред­варительным каскадам и заставляет выполнять их с транформаторным выходом.
Однотактные выходные каскады. Схемы однотактных выходных каскадов с трансформаторным включением нагрузки с ОЭ и ОБ  могут быть использованы лишь в режиме А. Для уменьшения коллекторного тока, вызванного изменениями режима, в схемы введены элементы Rэ, Сэ эмиттерной стабилизации. В схеме с ОБ  сопротивлением эмиттерной стабилизации является активное сопротивление вторичной обмотки трансформа­тора Tpl; если его недостаточно, в цепь эмиттера дополнительно включают резистор Rэ и шунтируют по переменному току конден­сатором Сэ.
Обычно оптимальное сопротивление нагрузки выходной цепи для транзисторов составляет десятки — сотни омов, для электрон­ных ламп - единицы килоомов, а сопротивление внешней нагрузки усилителя - единицы - десятки омов (например, сопротивление звуковой катушки головки динамического громкоговорителя 3 -10 Ом). Непосредственное включение низкоомного сопротивления нагрузки в выходную цепь усилительного элемента вызовет умень­шение мощности, отдаваемой усилителем в нагрузку, а также рост нелинейных искажений. Трансформаторное включение нагрузки обеспечивает согласование фактической нагрузки усилителя с оп­тимальной нагрузкой выходной цепи усилительного элемента. 
Однотактные выходные каскады имеют малый кпд. Использова­ние в схеме более мощных транзисторов позволяет повышать от­даваемую неискаженную мощность. Однако кпд при этом не по­вышается, а наличие большого подмагничивающего тока в первич­ной обмотке трансформатора снижает индуктивность и тем самым ухудшает передачу низших частот. Лучшие показатели можно по­лучить от выходного каскада, выполненного по двухтактной схеме.
Двухтактные выходные каскады. Двухтактные трансформатор­ные усилители (ДТУ) позволяют получить большую выходную мощность полезного сигнала. Выходная мощность каскада опреде­ляется типом усилительных приборов и режимом их работы; кпд зависит только от режима работы.
Схема ДТУ состоит из двух идентичных однотактных усилите­лей (плеч) на транзисторах или электронных лампах» работающих на общую нагрузку. Плечи электрически симметричны (имеют одинаковые параметры усилительных элемен­тов и режимы их питания).

 

Во вторичной обмотке выходного трансформатора под действи­ем этого потока будет индуктироваться эдс, пропорциональная удвоенной амплитуде переменного коллекторного тока. В резуль­тате мощность, отдаваемая двухтактным усилителем, будет вдвое больше мощности, отдаваемой транзистором каждого плеча каскада.
В Двухтактной схеме Компенсируются четные гармоники усили­ваемого тока. Гармоники совпадают по фазе, но проходят в-проти­воположных направлениях по полуобмоткам трансформатора  Уровень нелинейных иска­жений возрастает при несимметрии схемы (неидентичности пара­метров транзисторов или ламп в плечах схемы). Двухтактные выходные каскады допускают использование ре­жимов А, АВ и В. Наиболее часто они работают в режиме В, при котором рабочая точка выбирается в области отсечки коллекторного токаВ исходном состоянии в этом режиме тран­зисторы закрыты. При подаче даже слабого сигнала один из тран­зисторов открывается. Смена состояний транзисторов будет проис­ходить через половину периода усиливаемых колебаний.
Графики физических процессов в ДТУ, работающем в режиме В, Для более эффективного использования транзисторов выбирают напряжения UKm=EK, Iкт=Iк.макс, т. е. на­пряжение питания и амплитуду выходного тока ограничивают зна­чениями Eк<Uк.макс; Iкт+Iк.мин<Iк.макс. Поскольку плечи работают поочередно, каждое плечо отдает мощность Р' = Р" = Pн/2n. Мощность, отдаваемая всем каскадом, Р=Рн/nтр=0,5 IктUкт,
где Iкт = Iк.макс - Iк.мин; Uкт = Eк - (Uк.мин+АEк). Мощность, потребляемая от источника питания обоими тран­зисторами Ро = 2Eк(Iк.ср + Iк.мин), где 1«.ср = 1кт1п - постоянная составляющая полусинусоидального импульса выходного тока с ам­плитудой Iкт. Электрический кпд каскада (без учета потерь в трансформа­торе) здесь Uкт/Eк=Е - коэффициент использования коллекторного ис­точника. При Iкт>пIк.мин кпд nв~пз/4; при полном использовании коллекторного источника (з=1) кпд nв=nмакс=п/4=0,786, т.; е. 78,6%. Мощность, выделяемая на коллекторах обоих транзисторов, 2РК=Р0 - P=PI(nв - Р)=Р(1 - nв)/nв. Чтобы избежать перегрузки транзисторов, мощность, отдаваемая нагрузке двухтактным выход­ным каскадом в режиме В, Рк.макс> (0,25-0,3) РН/nТР. При большом уровне входного сигнала транзисторы большую часть полуперио­да работают в режиме насыщения с верхней отсечкой коллекторного тока, форма выходного сигнала приближается к прямоугольной.
При этом кпд может достигать 90 - 95 %, а мощность в нагрузке в 10 - 20 раз превышает мощность рассеивания на коллекторе. К преимуществам двухтактных схем относят: уменьшение не­линейных искажений по сравнению с однотактными схемами при одинаковой полезной мощности; отсутствие подмагничивания сер­дечника выходного трансформатора, что облегчает его конструкцию; меньшую чувствительность к пульсациям питающего напряжения, фону вследствие компенсации магнитных потоков, возбуждаемых противофазными коллекторными токами; снижение влияния на каскады предварительного усиления через источники питания из-за компенсации токов сигнала в питающих проводах, что позволяет упростить развязывающие фильтры.
Бестрансформаторные выходные каскады. Эти каскады выпол­няются на транзисторах с одинаковыми параметрами, но с различ­ным типом проводимости (со структурами р-n-р и n-р-n. При этом отпадает потребность во входном трансформаторе, ин­вертирующем сигнал на входе каскада. В такой схеме из-за различ­ной проводимости транзисторы будут работать поочередно при по­даче на вход переменного напряжения от обычного .усилительного каскада. Небольшое напряжение питания позволяет исключить и выходной трансформатор.
Бестрансформаторные каскады просты в исполнении, высоко­стабильны, малогабаритны, однако имеют меньший коэффициент |усиления по мощности, значительные нелинейные искажения, потреб­ляют большую мощность предоконечных каскадов. Нелинейные ис­кажения можно скомпенсировать введением более глубокой ООС.

Схемы бестрансформаторных выходных каскадов на составных транзисторах с различным типом проводимости обеспе­чивают более высокую чувствительность (за счет большего усиления по мощности) и меньшие нелинейные искажения.