Термоэлектрическое охлаждение
Термоэлектрическое охлаждение
Термоэлектрический метод охлаждения позволяет осуществить понижение температуры в малом объёме при незначительных габаритах и массе всего устройства.
В последние годы такие модули, работа которых основана на эффекте Пельтье, стали активно использовать для охлаждения разнообразных электронных компонентов компьютеров. В частности, их стали применять для охлаждения высокопроизводительных процессоров с высоким уровнем теплообразования.
Благодаря своим тепловым и эксплуатационным свойствам устройства, созданные на основе термоэлектрических модулей (модулей Пельтье), позволяют достичь необходимого уровня охлаждения компьютерных элементов без особых технических трудностей и финансовых затрат. В качестве кулеров электронных компонентов такие средства чрезвычайно перспективны: они компактны, удобны, надежны и обладают очень высокой эффективностью.
Особенно большой интерес полупроводниковые кулеры представляют в качестве средств, обеспечивающих интенсивное охлаждение в компьютерных системах, элементы которых установлены и эксплуатируются в жестких форсированных режимах. Использование таких режимов разгона (overclocking) часто обеспечивает значительный прирост производительности электронных компонентов, а следовательно, и всей системы. Однако работа в подобных режимах сопровождается значительным тепловыделением и нередко находится на пределе возможностей компьютерных архитектур и микроэлектронных технологий.
Необходимо отметить, что высоким тепловыделением сопровождается работа не только процессоров, но и современных высокопроизводительных видеоадаптеров, а в некоторых случаях и модулей памяти. Эти мощные элементы требуют для корректной работы интенсивного охлаждения даже в штатных режимах и тем более в режимах разгона.
Необходимо отметить, что коэффициент Пельтье существенно зависит от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице. Значения коэффициента Пельтье для различных пар металлов
Железо-константан | Медь-никель | Свинец-константан | |||
T, К | П, мВ | T, К | П, мВ | T, К | П, мВ |
273 | 13,0 | 292 | 8,0 | 293 | 8,7 |
299 | 15,0 | 328 | 9,0 | 383 | 11,8 |
403 | 19,0 | 478 | 10,3 | 508 | 16,0 |
513 | 26,0 | 563 | 8,6 | 578 | 18,7 |
593 | 34,0 | 613 | 8,0 | 633 | 20,6 |
833 | 52,0 | 718 | 10,0 | 713 | 23,4 |
Особенности эксплуатации Полупроводниковые термоэлектрические модули Пельтье, применяемые в средствах охлаждения электронных элементов, отличаются сравнительно высокой надежностью. В отличие от холодильников, созданных по традиционной технологии, они не имеют движущихся частей. Как отмечалось выше, для увеличения эффективности допускается каскадное включение модулей Пельтье, что позволяет довести температуру корпусов электронных элементов до отрицательных значений даже при значительной мощности рассеяния.
Однако, кроме очевидных преимуществ, модули Пельтье обладают и рядом специфических свойств, которые необходимо учитывать при их использовании в составе охлаждающих средств. Ниже мы рассмотрим важнейшие особенности эксплуатации этих модулей.
Тепловыделение Термоэлектрические модули отличаются относительно низким холодильным коэффициентом и, выполняя функции теплового насоса, сами становятся мощными источниками тепла. Использование их в составе средств охлаждения вызывает значительный рост температуры внутри системного блока, создавая трудности для работы не только защищаемых элементов и их систем охлаждения, но и для остальных компонентов компьютера. Это означает, что требуются дополнительные средства для снижения температуры, в частности, радиаторы и вентиляторы в конструктиве корпуса, улучшающие теплообмен с окружающей средой. Наиболее подходящее решение из воздушных средств охлаждения - технология теплового выхлопа, например, конструкции типа OTES (Outside Thermal Exhaust System) от Abit. С другой стороны, в процессе работы кулеров Пельтье избыточной мощности устанавливаются низкие температуры, способствующие конденсации влаги из воздуха. Это представляет опасность для электронных компонентов, так как конденсат может вызвать короткие замыкания между элементами. Чтобы избежать этого, нужно подбирать кулеры Пельтье оптимальной мощности. Произойдет конденсация или нет, зависит от нескольких параметров, из которых наибольшее значение имеют температура окружающей среды (в данном случае воздуха внутри корпуса), температура охлаждаемого объекта и влажность воздуха. Чем теплее воздух внутри корпуса и чем больше его влажность, тем вероятнее конденсация влаги. Модули Пельтье также создают сравнительно большую дополнительную нагрузку на блок питания компьютера - учитывая значения потребляемого ими тока, мощность блока питания должна быть не менее 300 Вт. В такой ситуации целесообразно выбирать системные платы и корпуса конструктива ATX, облегчающего организацию оптимальных теплового и электрического режимов, с блоками питания достаточной мощности.
В случае выхода из строя модуль Пельтье изолирует охлаждаемый элемент от радиатора кулера. Это очень быстро приводит к нарушению теплового режима защищаемого элемента и его перегреву. Поэтому целесообразно использовать качественные модули от известных производителей. Такие модули обладают высокой надежностью, ресурс их работы нередко превышает 1 млн ч.