Каскад с общей базой
Каскад с общей базой
Различают три основные схемы включения транзистора в усилительных каскадах - с общей базой, общим эмиттером и общим коллектором . Общий электрод (в данном случае база) по переменному току должен быть заземлен Часть электронов теряется в базе, например, вследствие рекомбинации (взаимной нейтрализации противоположных по знаку зарядов) электронов и дырок. Эти потери учитываются коэффициентом передачи тока эмиттера а. Так что при включении транзистора с общей базой постоянный ток коллектора оказывается равным где 1К0 - неуправляемый ток коллектора (или обратный ток коллекторного перехода). Ток базы при этом равен 1Б = 1Э - 1к, т. е. мал, поскольку при а близком к 1 ток коллектора не намного меньше тока эмиттера.Если переменное напряжение на входе усилительного каскада на биполярном транзисторе UBX не равно нулю, то наряду с постоянной составляющей тока эмиттера появляется его переменная составляющая. В результате появляется и переменная составляющая тока коллектора. Протекая через резистор RK, она создает на нем переменную составляющую выходного напряжения. Если сопротивление RK велико, то она может в сотни и тысячи раз превосходить UBX. Таким образом, каскад с общей базой, не усиливая ток, может усиливать напряжение и соответственно и мощность.Итак, усиление по напряжению в каскаде с общей базой обусловлено тем, что переменная составляющая входного тока переносится из низкоомной цепи эмиттера в намного более высокоомную цепь коллектора. Так что коэффициент усиления оказывается близким к отношению сопротивлений коллекторной и эмиттерной цепей. При этом сопротивление эмиттерной цепи (входное сопротивление) очень мало, поскольку эмиттерный переход открыт. Примерно оно равно <рт/1э, где (рт — температурный потенциал (его значение при комнатных температурах порядка 25 мВ, так что при токе эмиттера 1э = 1 мА входное сопротивление будет равно всего 25 Ом). К сожалению, из-за конечного времени пролета носителями области базы у каскада с общим эмиттером усиление на высоких частотах начинает снижаться. Оно понижается на 3 дБ, если частота усиливаемого сигнала достигает частоты fa (эта частота называется граничной частотой транзистора в схеме с общей базой). Многие современные транзисторы имеют fa порядка сотен МГц и выше. Емкости монтажа и самого транзистора могут также ухудшить усиление на высоких частотах.
что требуется дополнительный источник питания. Мало того, что такое мнение бытует среди радиолюбителей, так оно усиленно поддерживается в технической литературе. Откройте учебник с описанием работы каскада с ОБ. Первое, что вы увидите, так это горизонтальное расположение транзистора с двумя источниками питания: один в коллекторной цепи, другой в эмиттерной. После прочтения такого материала сразу пропадает какое-либо желание иметь дело с этим каскадом. Развеем этот миф. На верхнем рисунке вы видите знакомую вам схему с общим эмиттером. Легким движением мыши поворачиваем его вокруг оси и преобразуем в каскад с общей базой. По постоянному току все цепи остаются прежними. Базу по переменному току заземляем с помощью конденсатора Сф, входной сигнал подаем на эмиттер, выходной остается на прежнем месте. Каскад с общей базой готов, никаких трудностей с питанием не возникло, тем более с двумя источниками. С включением транзистора мы разобрались, теперь приступим к изучению его работы, где мифов также достаточно.
Сразу оговорю упрощения и допущения. Обратные токи переходов, ввиду их малости, я не рассматриваю. Для понимания принципа работы и инженерных расчетов это приемлемо. Коэффициент передачи тока для каскада с общей базой меньше единицы, т.к. часть эмиттерного тока ответвляется в базу: Iэ - Iб = Iк. Соотношение токов имеет величину Iк = α * Iэ , где α< 1 -коэффициент передачи по току для ОБ.
В современных транзисторах коэффициент α близок к единице (0.98 - 0.99), поэтому в практических расчетах можно считать Iэ = Iк. Отсутствие усиления по току совершенно не мешает получить от такого каскада усиление по напряжению, причем, немалое. Существует ещё один миф, что входное сопротивление каскада определяется резистором Rэ , который обязательно должен иметь маленький номинал. Но это не так. Входным током каскада является ток эмиттера транзистора, поэтому входное сопротивление в основном определяется сопротивлением эмиттерного перехода rэ = 25 /Iэ = 25Ом при токе 1мА (собственное сопротивление базы транзистора rб вносит небольшой вклад).
Ток, протекая от входной цепи к выходной, практически не изменяется, поэтому, на резисторах rэ и Rк, он создает падения напряжения пропорциональные величинам этих сопротивлений. Если Rк = 3кОм, то отношение Ku = Rк /rэ составит более 100 - это и есть коэффициент усиления по напряжению. Таким образом, недостатками каскада являются низкое входное сопротивление и отсутствие усиления по току, но более высокая граничная частота усиления и большее выходное сопротивление. Также каскад имеет более высокую линейность по сравнению с ОЭ. Не верьте утверждениям некоторых писателей, что каскад с общей базой имеет низкое выходное сопротивление в сравнении с другими схемами.
Практические соображения по толкованию работы каскада (усилителя) с общей базой
Для работы n-p-n транзистора необходимо, чтобы потенциал базы был положительным по отношению к эмиттеру, поэтому для открытия транзистора надо эмиттер "утянуть" в минус, т.е входное напряжение должно быть отрицательным. Проанализируем работу каскада на постоянном токе. Эмиттер транзистора с ОБ представляет собой точку с очень низким (динамическим) входным сопротивлением (около 25 Ом при токе 1мА). Поэтому можно принять, что напряжение в ней практически не меняется при изменении входного тока, (этакий виртуальный 0).
В связи с этим, предлагаю рассматривать каскад с ОБ как преобразователь ток-напряжение. Преобразование входного сигнала в выходной происходит как бы в два этапа:
- Сначала генерируем входной ток в эмиттер Iвх = (Uвх- 0.6) /Rэ,
- Затем в коллекторной нагрузке получаем падение напряжения, обусловленное этим током Uвых = Iвх * Rк (мы приняли, что Iвх = Iвых). Не забываем, что при протекании входного тока напряжение на эмиттере будет равно прямому падению напряжения на переходе - 0.6 В. В исходном состоянии транзистор закрыт, напряжение на коллекторе равно Uпит. При подаче на вход отрицательного напряжения транзистор начинает открываться, через него протекает ток, который создает падение напряжения на коллекторном резисторе. Потенциал коллектора понижается и в пределе станет равным 0. Максимальный ток транзистора при Uк = 0 составляет: Iмакс = Uпит /Rк. Сделаем конкретный пример расчета для постоянного тока: Rэ = 1кОм (Rэ >> rэ), Rк = 10кОм, Uвх = 1В . Входной ток равен Iвх = Iэ = (Uвх-0.6) /Rэ = 1-0.6/1 = 0.4мА. Т.к. ток коллектора равен току эмиттера, то изменение напряжения на коллекторном резисторе составит: Uк = Rк * Iк = Rк * Iэ = 10*0.4 = 4В. Коэффициент усиления по постоянному напряжению получился равен 4. В данном случае входным сопротивлением каскада является Rэ = 1кОм. Уменьшая это сопротивление, мы увеличим входной ток, который вызывет увеличение выходного тока и выходного напряжения на нагрузке.
Этот пример демонстрирует принцип расчета и понимания работы каскада с ОБ, который оказался не так страшен, как нам его малюют.
Результаты исследования усилителя с ОБ совпадают с результатами для каскада с ОЭ. Коэффициент усиления по переменному напряжению определяется отношением коллекторного и эмиттерного (в данном случае Rг) резисторов и не зависит от внутренних параметров транзистора при Rг > rэ.