.

Каскад с общей базой

 

Различают три основные схемы включения транзисто­ра в усилительных каскадах — с общей базой, общим эмиттером и общим коллектором . Общий электрод (в данном случае база) по переменному току должен быть заземлен Часть электронов теряется в базе, например, вследст­вие рекомбинации (взаимной нейтрализации противопо­ложных по знаку зарядов) электронов и дырок. Эти потери учитываются коэффициентом передачи тока эмиттера а. Так что при включении транзистора с общей базой посто­янный ток коллектора оказывается равным где 1К0 - неуправляемый ток коллектора (или обратный ток коллекторного перехода). Ток базы при этом равен 1Б = 1Э - 1к, т. е. мал, поскольку при а близком к 1 ток коллектора не намного меньше тока эмиттера.Если переменное напряжение на входе усилительного каскада на биполярном транзисторе UBX не равно нулю, то наряду с постоянной составляющей тока эмиттера появля­ется его переменная составляющая. В результате появля­ется и переменная составляющая тока коллектора. Проте­кая через резистор RK, она создает на нем переменную составляющую выходного напряжения. Если сопротивле­ние RK велико, то она может в сотни и тысячи раз превосходить UBX. Таким образом, каскад с общей базой, не усиливая ток, может усиливать напряжение и соответ­ственно и мощность.Итак, усиление по напряжению в каскаде с общей базой обусловлено тем, что переменная составляющая входного тока переносится из низкоомной цепи эмиттера в намного более высокоомную цепь коллектора. Так что коэффициент усиления оказывается близким к отноше­нию сопротивлений коллекторной и эмиттерной цепей. При этом сопротивление эмиттерной цепи (входное со­противление) очень мало, поскольку эмиттерный переход открыт. Примерно оно равно <рт/1э, где (рт — температур­ный потенциал (его значение при комнатных температу­рах порядка 25 мВ, так что при токе эмиттера 1э = 1 мА входное сопротивление будет равно всего 25 Ом). К сожалению, из-за конечного времени пролета носи­телями области базы у каскада с общим эмиттером усиле­ние на высоких частотах начинает снижаться. Оно пони­жается на 3 дБ, если частота усиливаемого сигнала достигает частоты fa (эта частота называется граничной частотой транзистора в схеме с общей базой). Многие современные транзисторы имеют fa порядка сотен МГц и выше. Емкос­ти монтажа и самого транзистора могут также ухудшить усиление на высоких частотах.

За что мы так не любим транзисторный усилитель с общей базой  Мифом № 1 является то, что довольно сложно организовать цепи питания такого каскада, вплоть до того,
что требуется дополнительный источник питания. Мало того, что такое мнение бытует среди радиолюбителей, так оно усиленно поддерживается в технической литературе. Откройте учебник с описанием работы каскада с ОБ. Первое, что вы увидите, так это горизонтальное расположение транзистора с двумя источниками питания: один в коллекторной цепи, другой в эмиттерной. После прочтения такого материала сразу пропадает какое-либо желание иметь дело с этим каскадом. Развеем этот миф. На верхнем рисунке вы видите знакомую вам схему с общим эмиттером. Легким движением мыши поворачиваем его вокруг оси и преобразуем в каскад с общей базой. По постоянному току все цепи остаются прежними. Базу по переменному току заземляем с помощью конденсатора Сф, входной сигнал подаем на эмиттер, выходной остается на прежнем месте. Каскад с общей базой готов, никаких трудностей с питанием не возникло, тем более с двумя источниками.  С включением транзистора мы разобрались, теперь приступим к изучению его работы, где мифов также достаточно.

Как же работает усилитель с общей базой?  Рассмотрим упрощенную схему включения транзистора с общей базой. Направления токов показаны условно, символизируя, что вход -  это эмиттер, выход - коллектор, часть тока ответвляется в базу.
Сразу оговорю упрощения и допущения. Обратные токи переходов, ввиду их малости, я не рассматриваю. Для понимания принципа работы и инженерных расчетов это приемлемо. Коэффициент передачи тока для каскада с общей базой меньше единицы, т.к. часть эмиттерного тока ответвляется в базу: Iэ - Iб = Iк. Соотношение токов имеет величину Iк = α * Iэ , где α< 1 -коэффициент передачи по току для ОБ.
В современных транзисторах коэффициент α близок к единице (0.98 - 0.99), поэтому в практических расчетах можно считать Iэ = Iк.  Отсутствие усиления по току совершенно не мешает получить от такого каскада усиление по напряжению, причем, немалое. Существует ещё один миф, что входное сопротивление каскада определяется резистором Rэ , который обязательно должен иметь маленький номинал.  Но это не так. Входным током каскада является ток эмиттера транзистора, поэтому входное сопротивление в основном определяется  сопротивлением эмиттерного перехода rэ = 25 /Iэ = 25Ом при токе 1мА (собственное сопротивление базы транзистора rб вносит небольшой вклад).
Ток, протекая от входной цепи к выходной, практически не изменяется, поэтому, на резисторах rэ и Rк, он создает падения напряжения пропорциональные величинам этих сопротивлений. Если Rк = 3кОм, то отношение Ku = Rк /rэ составит более 100 - это и есть коэффициент усиления по напряжению.  Таким образом, недостатками каскада являются низкое входное сопротивление и отсутствие усиления по току, но более высокая граничная частота усиления и большее выходное сопротивление. Также каскад имеет более высокую линейность по сравнению с ОЭ. Не верьте утверждениям некоторых писателей, что каскад с общей базой имеет низкое выходное сопротивление в сравнении с другими схемами.
Практические соображения по толкованию работы каскада (усилителя) с общей базой
Для работы n-p-n транзистора необходимо, чтобы потенциал базы был положительным по отношению к эмиттеру, поэтому для открытия транзистора надо эмиттер "утянуть" в минус, т.е входное напряжение должно быть отрицательным.  Проанализируем работу каскада на постоянном токе. Эмиттер транзистора с ОБ представляет собой точку с очень низким (динамическим) входным сопротивлением (около 25 Ом при токе 1мА). Поэтому можно принять, что напряжение в ней практически не меняется при изменении входного тока, (этакий виртуальный 0).
В связи с этим, предлагаю рассматривать каскад с ОБ как преобразователь ток-напряжение. Преобразование входного сигнала в выходной происходит как бы в два этапа:
- Сначала генерируем входной ток в эмиттер Iвх = (Uвх- 0.6) /Rэ,
- Затем в коллекторной нагрузке получаем падение напряжения, обусловленное этим током Uвых = Iвх * Rк (мы приняли, что Iвх = Iвых).  Не забываем, что при протекании входного тока напряжение на эмиттере будет равно прямому падению напряжения на переходе - 0.6 В. В исходном состоянии транзистор закрыт, напряжение на коллекторе равно Uпит. При подаче на вход отрицательного напряжения транзистор начинает открываться, через него протекает ток, который создает падение напряжения на коллекторном резисторе. Потенциал коллектора понижается и в пределе станет равным 0. Максимальный ток транзистора при Uк = 0 составляет: Iмакс = Uпит /Rк. Сделаем конкретный пример расчета для постоянного тока: Rэ = 1кОм (Rэ >> rэ), Rк = 10кОм, Uвх = 1В .  Входной ток равен Iвх = Iэ = (Uвх-0.6) /Rэ = 1-0.6/1 = 0.4мА. Т.к. ток коллектора равен току эмиттера, то изменение напряжения на коллекторном резисторе составит: Uк = Rк * Iк = Rк * Iэ = 10*0.4 = 4В.  Коэффициент усиления по постоянному напряжению получился равен 4. В данном случае входным сопротивлением каскада является Rэ = 1кОм. Уменьшая это сопротивление, мы увеличим входной ток, который вызывет увеличение выходного тока и выходного напряжения на нагрузке.
Этот пример демонстрирует принцип расчета и понимания работы каскада с ОБ, который оказался не так страшен, как нам его малюют.

Усилитель с общей базой для переменного сигнала Теперь нам легче понять работу усилителя на переменном сигнале. Для усиления переменного напряжения необходимо вывести транзистор на линейный участок рабочей характеристики. На рисунке 2 показаны цепи смещения транзистора, с помощью которых задается режим по постоянному току. Расчет их ничем не отличается от расчетов стандартного усилителя с ОЭ. Ток покоя Iо через транзистор устанавливается в пределах нескольких миллиампер. Переменный сигнал подается в эмиттер через конденсатор. У коллекторного тока транзистора появляется переменная составляющая, т.е. ток в некоторых пределах изменяется относительно тока покоя согласно изменениям входного напряжения. Проведем небольшие эксперименты с усилителем. Рассмотрим коэффициент передачи каскада от точки 1 до выхода с коллектора. В качестве источника сигнала возьмем генератор сигналов звуковой частоты ГНЧ с низким выходным сопротивлением, менее 100 Ом. Выходное напряжение установим 1В.  В качестве Rг поставим внешний резистор 1 кОм. В нагрузке резистор Rк = 10кОм. Для источника сигнала входным сопротивлением каскада является сумма Rг и rэ, т.к. они включены последовательно. Входной ток от источника сигнала равен Iвх = Iэ = Uг /(Rг + rэ) = . Uг /Rг, т.к.  rэ - мало. Выходное напряжение при этом составит: Uвых = Rк * Iк = Rк * α*Iэ = Rк * α* Uг /Rг.  Принимая α = 1, получим Uвых = Uг * Rк /Rг.  Коэффициент усиления равен Ku = Uвых /Uг = Rк /Rг = 10, тогда Uвых = 10 В.  Заглянем поглубже и выясним роль входного сопротивления транзистора rэ, ибо нам все уши прожужжали о низком входном сопротивлении каскада с ОБ. Посмотрим осциллографом, что происходит в точке 2. Мы обнаружим, что там присутствует весьма маленький синусоидальный сигнал, в нашем случае  25 мВ. Величина напряжения сигнала обусловлена делителем напряжения, образованным Rг и rэ: 1В * 25/1000 = 25мВ. Каким образом сигнал на выходе достигает величины в несколько вольт? Это происходит по той причине, что каскад имеет внушительный "собственный"  коэффициент усиления  по напряжению (от точки 2 до коллектора), определяемый отношением нагрузочного сопротивления и входного сопротивления транзистора:  Ku = Rк /rэ = 10000/25 = 400, тогда Uвых = Ku * Uвх = 25 * 400 = 10000 мВ или 10 В. Мы получили тот же результат, что и выше. Делаем вывод:
Результаты исследования усилителя с ОБ совпадают с результатами для каскада с ОЭ. Коэффициент усиления по переменному напряжению определяется отношением коллекторного и эмиттерного (в данном случае Rг) резисторов и не зависит от внутренних параметров транзистора при Rг > rэ.