.

Характеристики и параметры выпрямительных и универсальных диодов

Характеристики и параметры выпрямительных и универсальных диодов
 
Выпрямительные диоды служат для выпрямления переменного тока низкой частоты. В основе выпрямительных свойств этих диодов лежит принцип односторонней проводимости электронно-дырочных р-и-переходов.
Универсальные диоды используют в различной радиоэлектрон­ной аппаратуре в качестве выпрямителей переменного тока высоких и низких частот, умножителей и преобразователей частоты, детекто­ров больших и малых сигналов и т. д. Диапазон рабочих токов и напряжений выпрямительных и уни­версальных диодов очень широк, поэтому они выпускаются как с точечным так и плоскостным р-n-переходом в структуре полупроводника с площадями от десятых долей квад­ратного миллиметра до несколь­ких квадратных сантиметров. Обычно в универсальных диодах используются переходы с малыми площадями и емкостями, но с от­носительно высокими значениями прямых токов и обратных напря­жений. Этим требованиям удовлет­воряют точечные, микросплавные плоскостные и мезапланарные дио­ды. Характеристики и параметры универсальных диодов те же, что и у выпрямительных диодов.
Вольтамперная характеристи­ка (ВАХ) выпрямительных диодов выражает зависимость тока, про­ходящего через диод, от значения и полярности приложенного к нему постоянного напряжения Прямая ветвь характеристики  показывает зависи­мость тока через диод при прямой пропускной полярности приложен­ного напряжения. Сила прямого тока  экспоненциаль­но зависит от приложенного к диоду прямого напряжения и может достигать больших значений при малом (порядка 0,3 — 1 В) падении напряжения на диоде. 
Обратная ветвь характеристики  соответствует не­проводящему направлению тока через диод при обратной полярно­сти приложенного к диоду напряжения. Обратный ток (участок. ОД) незначительно зависит от приложенного обратного напряжения. При относительно большом обратном напряжении (точка В на характе­ристике) наступает электрический пробой р-n-перехода, при кото­ром быстро увеличивается обратный ток, что может привести к теп­ловому пробою и повреждению диода. При повышении температуры возрастут тепловой ток и ток генерации носителей зарядов в пере­ходе, что приведет к увеличению прямого и обратного токов и сме­щению характеристик диода.
Свойства и взаимозаменяемость диодов оценивают по их пара­метрам. К основным параметрам относят токи и напряжения, свя­занные с ВАХ Диоды применяют в цепях как переменного, так и постоянного тока. Поэтому для оценки свойств диодов наряду с параметрами на постоянном токе пользуются дифференциальными параметрами, ха­рактеризующими их работу на переменном токе.
Выпрямленный (прямой) ток Iпр представляет собой ток (сред­нее значение за период), проходящий через диод, при котором обес­печивается его надежная и длительная работа. Сила этого тока ог­раничивается разогревом или максимальной мощностью Рмакс. Пре­вышение прямого тока ведет к тепловому пробою и повреждению диода.
  • Прямое падение напряжения UПр.Ср — среднее значение за пери­од на диоде при прохождении через него допустимого прямого тока.
  • Допустимое обратное напряжение U0бр —среднее значение за период, при котором обеспечивается надежная и длительная работа диода. Превышение обратного напряжения приводит к пробою и вы­ходу диодов из строя. При повышении температуры значения об-ратного напряжения и прямого тока снижаются.
  • Обратный ток Iобр — среднее значение за период обратного то­ка при допустимом Uобр. Чем меньше обратный ток, тем лучше
Вы­прямительные свойства диода. Повышение температуры на каждые 10 °С приводит к увеличению обратного тока у германиевых « крем­ниевых диодов, в 1,5 — 2 раза и более.
Максимальная постоянная, или средняя за период мощность Pмакс, рассеиваемая диодом, при которой диод может длительно ра­ботать, не изменяя своих параметров. Эта мощность складывается из суммы произведений токов и напряжений при прямом и обрат­ном смещениях перехода, т. е. за положительный и отрицательный полупериоды переменного тока. Для приборов большой мощности, работающих с хорошим теплоотводом, Pмакс=(Tп.макс — Тк)/Rпк. Для приборов малой мощности, работающих без теплоотвода,
Pмакс = (Tп.макс — Т с) /Rп.с.
Максимальная температура перехода Гп.макс зависит от мате­риала (ширины запрещенной зоны) полупроводника и степени его легирования, т. е. от удельного сопротивления области р-n-перехода — базы. Диапазон Гп.макс для германия лежит в пределах 80 — 110°С, а для кремния 150 — 220 °С.
Тепловое сопротивление Rп.к между переходом и корпусом оп­ределяется температурным перепадом между переходом Тпи кор­пусом Tк и средней выделяемой в переходе мощностью Ра и состав­ляет 1 — 3°С/Вт: Ra.K=(Ta — TK)/Pa. Тепловое сопротивление Rn c между переходом и окружающей средой зависит от температурного перепада между переходом Тп и окружающей средой Тс. Поскольку практически RПK<RK с, то Rn с определяется тепловым сопротивлением между корпусом при­бора и окружающей средой- Rnc=(Ta — Tc)/Pn=Rn K+RK c. Для обычных широко распространенных корпусов Ra c=0,2 — 0,4 °С/мВт.
Предельный режим использования диодов характеризуют мак­симально допустимое обратное напряжение UОбр макс, максимальный выпрямительный ток IПр макс и максимальная темпера­тура перехода ТПмакс С повышением частоты переменного напряжения, подводимого к диоду, ухудшаются его выпрямительные свойства. Поэтому для определения свойств выпрямительных диодов обычно оговаривается диапазон рабочих частот Дf или максимальная частота выпрямле­ния fмакс На частотах, больших fмакс, не успевают скомпенсироваться накопленные за время прямого полупериода неосновные носите­ли заряда в базе, поэтому при обратном полупериоде выпрямляемо­го напряжения переход некоторое время остается прямосмещенным (т е теряет свои выпрямительные свойства). Это свойство прояв­ляется тем значительнее, чем больше импульс прямого тока или вы­ше частота подводимого переменного напряжения Кроме того, на высоких частотах начинает проявляться шунтирующее действие барьерной и диффузионной емкостей p-n-перехода, снижающих его выпрямительные свойства
При расчете режима выпрямителей используются статическое со­противление постоянному току и дифференциальное сопротивление диодов переменному току
  • Дифференциальное сопротивление переменному току rдиф=dU/dI или rДиф=ДU/ДI определяет изменение тока через диод при изменении напряжения вблизи выбранной рабочей точки на харак­теристике диода. При прямом включении напряжения rдиф Пр=0,026/ /IПр и токе IПр>10 мА оно составляет несколько омов При под­ключении обратного напряжения rДИф обр велико (от десятков ки-лоомов до нескольких мегаомов).
  • Статическое сопротивление диода постоянному току гпрд = UПр/Iпр, rобр д = Uобр/Iобр В Области прямых токов rПр д>rдиф пр, а в области обратных r0бр д<rдифобр Поскольку электрическое со­противление p-n-перехода в прямом направлении меньше, чем в об­ратном, диод обладает односторонней проводимостью и использует­ся для выпрямления переменного тока

Емкости диодов оказывают существенное влияние на их работу на высоких частотах и в импульсных режимах. В паспортных дан­ных диодов обычно приводится общая емкость диода Сд, которая помимо барьерной и диффузионной включает емкость корпуса при­бора Эту емкость измеряют между внешними токоотводами диода при заданных обратном напряжении смещения и частоте тока