.

Транзисторно−транзисторная логика (ТТЛ)

Характерной особенностью ТТЛ являются многоэмиттерные транзисторы. Эти транзисторы сконструированы таким образом, что не оказывают влияния друг на друга. Каждому эмиттеру соответствует свой p-n-переход. В первом приближении многоэмиттерный транзистор может моделироваться схемой на диодах (пунктир на рис. 18.8), в этом случае он работает как схема диодно-транзисторной логики И-НЕ.  

К достоинствам ТТЛ-логики можно отнести: высокое быстродействие (10 нс), надежность, радиационную стойкость.

Недостатками являются: наличие резисторов, большая площадь на кристалле, большая потребляемая мощность, наличие паразитных транзисторов.

Рис. 18.8. Схема ТТЛ-элемента с простым инвертором, выполняющая логическую операцию И-НЕ

Из анализа схемы можно сделать вывод, что если на один из входов или на оба входа подать низкий уровень напряжения, то ток базы транзистора VT2 будет равен нулю, и на коллекторе транзистора VT2 будет высокий уровень напряжения. Если на оба входа подать высокий уровень напряжения, то через базу VT2 транзистора будет протекать большой базовый ток и на коллекторе транзистора VT2 будет низкий уровень напряжения, т. е. данный элемент реализует функцию И-НЕ.
Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И-НЕ, и сложный инвертор (рис.18.9).

 

 Рис. 18.9. Базовый элемент ТТЛ со сложным инвертором, выполняющий логическую операцию И-НЕ

 
 Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и транзистор VT2закрыт, а, следовательно, закрыти транзистор VT4, т. е. на выходе будет высокий уровень напряжения. Если на обоих входах одновременно действует высокий уровень напряжения, то транзистор VT2открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора VT4и запиранию транзистора VT3, т. е. реализуется функция И-НЕ.
Элементы с тремя состояниями и с открытым коллектором. Вентили ТТЛ и КМОП имеют двухтактные выходные схемы: ВЫСОКИЙ или НИЗКИЙ уровень подается на выход через открытый биполярный или МОП-транзистор. Такую схему, которая носит название активной нагрузки, а в ТТЛ называется также столбовым выходом, используют почти все логические элементы. Эта схема обеспечивает низкое выходное сопротивление в обоих состояниях, имеет малое время переключения и обладает более высокой помехоустойчивостью по сравнению с одиночным транзистором, который использует в качестве коллекторной нагрузки пассивный резистор.
В случае КМОП применение активного выхода, помимо всего прочего, позволяет понизить рассеиваемую мощность. Однако существует ряд ситуаций, при которых активный выход, оказывается неудобным.
В качестве примера представим себе вычислительную систему, в которой должны обмениваться данными несколько функциональных блоков. Центральный процессор (ЦП), память, а также различные периферийные устройства должны иметь возможность передавать и принимать 16-разрядные слова, и было бы, мягко говоря, неудобно использовать для соединения каждого устройства с каждым индивидуальный 16-жильный кабель.
Для решения этой проблемы используется так называемая шина (или магистраль) данных (databus), т. е. один 16-жильный кабель, доступный для всех устройств. Такая структура аналогична телефонному каналу коллективного пользования: в каждый момент времени «говорить» («передавать данные») может только одно устройство, а остальные могут только «слушать» («принимать данные»). При использовании шинной системы необходимо иметь соглашение о том, кому разрешено «говорить». В связи с этим употребляются такие термины, как «арбитр шины», «ведущее устройство» и «устройство управления шиной».
Для возбуждения шины нельзя использовать вентили (или другие схемы) с активным выходом, поскольку их нельзя отключить от общих информационных линий (в любой момент времени выходы устройств, подключенные к шине, будут находиться в состоянии ВЫСОКОГО или НИЗКОГО уровня). Для этого случая необходим вентиль, выход которого может находиться в «обрыве», т. е. быть «открытым». Такие устройства выпускаются промышленностью и имеют две разновидности, которые носят названия «элементов с тремя состояниями»и «элементов с открытым коллектором». Начнем с рассмотрения последних, подразумевая, что все сказанное применимо также и к элементам с тремя состояниями.
В выходной схеме вентиля с открытым коллектором отсутствует транзистор, являющийся активной нагрузкой (рис. 18.10).
 

Рис. 18.10. ТТЛ вентиль с открытым коллектором

 
 При использовании таких элементов внешний нагрузочный резистор можно подключить к любому источнику. Величина этого резистора не является критичной: при малых значениях резистора обеспечиваются повышенные быстродействия и помехоустойчивость, однако повышаются рассеиваемая мощность и нагрузочный ток выходного каскада. Для ТТЛ типичные значения лежат в пределах от нескольких сотен до нескольких тысяч Ом. Как мы вскоре покажем, все, что далее будет говориться о вентилях с открытым коллектором, относится также и к вентилям с тремя состояниями.
Иногда возникает необходимость логического объединения выходов очень большого числа элементов. Например, для объединения 20 выходов потребовалось бы использовать логический элемент с 20 входами и вести к нему 20 отдельных проводов. Этого можно избежать, используя логические элементы с открытым коллектором. В качестве выходного каскада они содержат, как показано на рисунке 18.10, n-р-n-транзистор, эмиттер которого соединен с общей точкой. Выходы таких систем, в отличие от обычно используемых двухтактных выходных каскадов, могут подключаться к одному общему коллекторному резистору параллельно друг другу.
Выходное напряжение имеет высокий уровень только тогда, когда все выходные транзисторы элементов заперты, следовательно, здесь реализуется функция ИЛИ. Так как логическая связь организуется с помощью внешнего монтажа, такое соединение условно называется «монтажное ИЛИ».
Другим применением схем с открытым коллектором является управление внешней нагрузкой, которая должна подключаться к источнику положительного напряжения, превышающего напряжение питания ИМС. Может, частности, потребоваться включить маломощную 12-вольтовую лампочку или сформировать перепад логических уровней напряжения 15 В с помощью резистора, установленного между выходом вентиля и источником +15 В (рис. 18.12).
 
Рисунок 18.11 Реализация функции «монтажное ИЛИ» 
Однако такая схема имеет существенный недостаток: переход в высокоомное (единичное) состояние из-за паразитных емкостей происходит всегда медленнее, чем в низкоомное (нулевое). Поэтому вместо элементов с открытым коллектором лучше использовать элементы с трехстабильным выходом. Они содержат обычный двухтактный выходной каскад, который, однако, может быть переведен в особое высокоомноесостояние (высокоимпедансное состояние или обрыв). Для управления выходным каскадом служит специальный вывод – разрешение выдачи данных.

 

Рис. 18.12. Подключение вентиля с открытым коллектором к источнику 15В
Соответствующая схема ТТЛ представлена на рис. 18.13.

 

 

 Рис. 18.13. Трехстабильный ТТЛ вентиль

 
Если уровень управляющего напряжения UEнизкий, запираются обатранзистора  и . При высоком уровне UE получим обычную логическую связь И-НЕ между входными сигналами  и . Аналогичным образом можно перевести в высокоомное (безразличное) состояние и трехстабильный элемент КМОП.