.

ПРИМЕНЕНИЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

В настоящее время разработано огромное количество аналоговых интегральных схем (ИС) двух типов – базовые электронные элементы (операционные усилители, компараторы, стабилизаторы напряжения) и специализированные ИС, предназначение для решения одной задачи. На первый взгляд может показаться, что все уже придумано, бери и пользуйся. На самом деле это не так.
         На ранних этапах развития электроники «кирпичиками», из которых собирались схемы, являлись транзисторы, диоды, резисторы и другие дискретные элементы. Сейчас «кирпичиками» являются разнообразные ИС. По цене стоимость дискретных элементов и ИС практически сравнялись. Современный этап развития электроники характеризуется тем, что при проектировании электронных средств различного назначения используют не дискретные элементы, а законченные функциональные элементы, выполненные на интегральных схемах. Такой подход позволяет значительно повысить статические, динамические, эксплуатационные и надежностные показатели аппаратуры, существенно удешевить и сократить сроки ее проектирования. Разработка схем фактически сводится к разработке структуры, удовлетворяющей поставленным требованиям, выбору необходимых ИС и согласованию их входных и выходных характеристик.
         Применительно к цифровым устройствам выбор ИС достаточно формализован и практически не представляет труда. В то же время выбор и применение аналоговых ИС достаточно специфичны и оставляют большой простор для творчества разработчика. Он должен знать внутреннюю схемотехнику и конструкцию ИС, свойства типовых схем и условия их применения, а также методы быстрой оценки основных характеристик разрабатываемого устройства.
         Несмотря на различие элементной базы, функционального назначения и технологии изготовления, основой большинства ИС является схемотехника дифференциального усилителя постоянного тока, на базе которой выполнены операционные усилители. Дифференциальный усилитель в настоящее время по существу является основным схемотехническим элементом современной интегральной аналоговой электроники. Именно по этой причине интегральные усилители постоянного тока являются наиболее массовым типом аналоговых ИС.
Операционный усилитель изначально был спроектирован для выполнения математических операций (отсюда его название), путём использования напряжения как аналоговой величины. Такой подход лежит в основе аналоговых компьютеров, в которых ОУ использовались для моделирования базовых математических операций (сложение, вычитание, интегрирование, дифференцирование и т. д.). Однако идеальный ОУ является многофункциональным схемотехническим решением, он имеет множество применений помимо математических операций. Реальные ОУ, основанные на транзисторах, электронных лампах или других активных компонентах, выполненные в виде дискретных или интегральных схем, являются приближением к идеальным. Первые промышленные ламповые ОУ (1940-е гг.) выполнялись на паре двойных триодов, в том числе в виде отдельных конструктивных сборок в корпусах с октальным цоколем. В 1963 Роберт Видлар, инженер Fairchild Semiconductor, спроектировал первый интегральный ОУ — μA702. При цене в 300 долларов, прибор, содержавший 9 транзисторов, использовался только в военных применениях. Первый доступный интегральный ОУ, μA709, также спроектированный Видларом, был выпущен в 1965; вскоре после выпуска его цена упала ниже 10 долларов, что было всё ещё слишком дорого для бытового применения, но вполне доступно для массовой промышленной автоматики и т. п. гражданских задач. В 1967 National Semiconductor, куда перешёл работать Видлар, выпустила LM101, а в 1968 Fairchild выпустило практически идентичный μA741 — первый ОУ со встроенной частотной коррекцией. ОУ LM101/μA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970х) и с изолированным затвором (начало 1980х), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.
Применение ОУ в электронике чрезвычайно широко — операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ стоят всего несколько центов в крупных партиях (1000шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.
Обозначение операционного усилителя на схемах
На рисунке показано схематичное изображение операционного усилителя. Выводы имеют следующее значение:
  • V+: неинвертирующий вход
  • V: инвертирующий вход
  • Vout: выход
  •  VS+: плюс источника питания (также может обозначаться как V_\mathrm{DD}, V_\mathrm{CC} , или V_\mathrm{CC+} )
  •  VS: минус источника питания (также может обозначаться как V_\mathrm{SS}, V_\mathrm{EE} , или V_\mathrm{CC-} )
Указанные пять выводов присутствуют в любом ОУ, они необходимы для его функционирования. Однако, существуют операционные усилители, не имеющие неинвертирующего входа[1]. В частности, такие ОУ находят применение в аналоговых вычислительных машинах (АВМ). ОУ, применяемые в АВМ, принято делить на 5 классов, из которых ОУ первого и второго класса имеют только один вход. Операционные усилители первого класса — усилители высокой точности (УВТ) с одним входом. Они предназначены для работы в составе интеграторов, сумматоров, устройств слежения-хранения, электронных коэффициентов. Высокий коэффициент усиления, предельно малые значения смещения нуля, входного тока и дрейфа нуля, высокое быстродействие обеспечивают снижение погрешности, вносимой усилителем, ниже 0,01 %. Операционные усилители второго класса — усилители средней точности (УСТ) также с одним входом, обладающие меньшим коэффициентом усиления и большими значениями смещения и дрейфа нуля. Эти ОУ предназначены для применения в составе электронных устройств установки коэффициентов, инверторов, электронных переключателей, в функциональных преобразователях, множительных устройствах. Помимо этого, некоторые ОУ могут иметь дополнительные выводы (предназначенные, например, для установки тока покоя, частотной коррекции, балансировки или других функций).
Выводы питания (VS+ и VS) могут быть обозначены по-разному (см. выводы питания интегральных схем). Часто выводы питания не рисуют на схеме, чтобы не загромождать её несущественными деталями, при этом способ подключения этих выводов явно не указывается или считается очевидным (особенно часто это происходит при изображении одного усилителя из микросхемы с четырьмя усилителями с общими выводами питания). При обозначении ОУ на схемах можно менять местами инвертирующий и неинвертирующий входы, если это удобно; выводы питания, как правило, всегда располагают единственным способом (положительный вверху).