.

Электроэрозионная обдирка

Электрохимические и электрофизические технологии в настоящее время применяют на всех этапах изготовления деталей, начиная от получения заготовок и заканчивая их отделочной обработкой. Используя эти технологии, решают уникальные технологические задачи, обеспечивающие заданное удаление, перемещение или приращение (большого или малого) объема материала заготовки.

Широкое использование в машиностроении материалов с особыми физико-механическими характеристиками, обуславливающими их плохую обрабатываемость традиционными методами резания; создание деталей со сложными формами, повышенными требованиями к качеству поверхностного слоя и точности изготовления; необходимость снижения себестоимости обработки и повышения производительности труда – все это привело к появлению и распространению в производстве электрохимических и электрофизических методов обработки.

История развития электроэрозионной и  электрохимической обработки В конце 18 века английским ученым Дж. Пристли было описано явление эрозии металлов под действием электрического тока. Было замечено, что при разрыве электрической цепи в месте разрыва возникает искра или более продолжительная электрическая дуга. Причем искра или дуга оказывает сильное разрушительное воздействие на контакты разрываемой цепи, называемое эрозией. Электрической эрозии подвержены контакты реле, выключателей, рубильников и других подобных устройств. Много исследований было посвящено устранению или хотя бы уменьшению такого разрушения контактов.

Датой рождения электроэрозионной обработки материалов (ЭЭО) считается 1943 год, от которого отсчитывается приоритет изобретения наших соотечественников Б.Р. Лазаренко и Н.И. Лазаренко. Поместив электроды в жидкий диэлектрик и размыкая электрическую цепь, ученые заметили, что жидкость мутнела уже после первых разрядов между контактами. Они установили, что это происходит из-за того, что в жидкости появляются мельчайшие металлические шарики, которые возникают вследствие электрической эрозии электродов. Ученые решили усилить эффект разрушения и попробовали применить электрические разряды для равномерного удаления металла. С этой целью они поместили электроды (инструмент и заготовку) в жидкий диэлектрик, который охлаждал расплавленные частицы металла и не позволял им оседать на противолежащий электрод. В качестве генератора импульсов использовалась батарея конденсаторов, заряжаемых от источника постоянного тока; время зарядки конденсаторов регулировали реостатом. Так появилась первая в мире электроэрозионная установка. Электрод-инструмент перемещали к заготовке. По мере их сближения возрастала напряженность поля в межэлектродном промежутке (МЭП). При достижении определенной напряженности поля на участке с минимальным расстоянием между поверхностями электродов, измеряемым по перпендикуляру к обрабатываемой поверхности и называемым минимальным межэлектродным зазором, возникал электрический разряд, под действием которого происходило разрушение участка заготовки. Продукты обработки попадали в диэлектрическую жидкость, где охлаждались, не достигая электрода-инструмента, и затем осаждались на дно ванны. Через некоторое время электрод-инструмент прошил пластину, причем контур отверстия точно соответствовал профилю инструмента. Так, явление, считавшееся вредным, было применено для размерной обработки материалов. Изобретение электроэрозионной обработки (ЭЭО) имело выдающееся значение. К традиционным способам формообразования (резанию, литью, обработки давлением) прибавился совершенно новый, в котором непосредственно использовались электрические процессы. Первоначально для осуществления электроэрозионной обработки применялись исключительно искровые разряды, создаваемые конденсатором в так называемом RC-генераторе. Поэтому новый процесс в то время называли электроискровой обработкой. В 1948 году М.М. Писаревским на основе использования импульсов дугового разряда была предложена электроимпульсная обработка. Этот метод стал внедряться в промышленность в начале 50-х годов. В последующие годы эволюция динамично продолжалась: 1967 год - разработка малоизнашиваемых электродов-инструментов, 1975 год - внедрение систем ЧПУ и адаптивного управления, 1979 год - использование планетарных головок и получение зеркальных поверхностей, 1987 год - достижение сверхмалого износа инструмента. Погрешность обработки деталей на электроэрозионных станках снизилась с ±30 до ±5 мкм, а ежегодный выпуск станков вырос в 8-10 раз.

Практическое использование электрохимических методов обработки началось с 30-х годов 19 века (гальваностегия и гальванопластика). Первый патент на электролитическое полирование был выдан в 1910 году Е.И. Шпитальскому. Один из базовых способов электрохимической размерной обработки - "анодное растворение при высоких плотностях тока с удалением анодных продуктов потоком электролита" был предложен В.Н. Гусевым и Л.А. Рожковым в 1928 году. Работы, выполненные под руководством В.Н. Гусева (1904-1956 гг.), позволили установить основные закономерности управляемого съема материала при высокоскоростном анодном растворении металлов и сплавов, создать и внедрить в промышленное производство первые образцы соответствующего оборудования. В годы войны и, особенно в послевоенные годы электрохимическая обработка материалов стала получать все большее распространение на предприятиях оборонных отраслей промышленности. К середине шестидесятых годов в авиационной промышленности СССР работало уже около 300 единиц электрохимического оборудования, а в семидесятых годах на передовых предприятиях авиадвигателестроения функционировали уже специализированные цехи и участки, в каждом из которых насчитывалось по 30 - 50 единиц оборудования. История развития электроэрозионного и электрохимического методов обработки материалов является не только яркой иллюстрацией завоевания мирового технологического пространства наукоемкими технологиями, но и подчеркивает государственную важность обладания такими технологиями и их дальнейшего развития.

Разновидности электрофизических и электрохимических методов обработки

Электрофизические и электрохимические методы обработки - это общее название методов обработки конструкционных материалов непосредственно электрическим током, электролизом и их сочетанием с механическим воздействием. В электрофизические и электрохимические методы обработки включают также методы ультразвуковые, плазменные и ряд других методов. С разработкой и внедрением в производство этих методов сделан принципиально новый шаг в технологии обработки материалов — электрическая энергия из вспомогательного средства при механической обработке (осуществление движения заготовки, инструмента) стала рабочим агентом. Всё более широкое использование электрофизических и электрохимических методов обработки в промышленности обусловлено их высокой производительностью, возможностью выполнять технологические операции, недоступные механическим методам обработки

Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение (расстояние) между электродами, погруженными в жидкий диэлектрик, то при их сближении (увеличении напряжения) происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой. Так как длительность используемых в данном методе обработки электрических импульсов не превышает 10—2 сек, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого . Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов - их длительностью, частотой следования, энергией в импульсе. Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы

 Физическая сущность этой технологии (съем материала за счет его расплавления и испарения в искровом разряде) не отличается от классической. Однако экспериментально установлено, что если для обработки одновременно использовать несколько электрически изолированных друг от друга катодов – инструментов или одновременной обработки не изолированными инструментами нескольких электрически изолированных заготовок, то производительность процесса существенно возрастает. Установлена следующая эмпирическая зависимость: m/m0 = n * e (n-1) где: n ≤ 6; e = 0,7 .. 0,95; m/m0 ≤ 4,5. Это позволяет уменьшить один из главных недостатков классической электроэрозионной обработки – ее невысокую производительность.

Эта технология наиболее эффективна в качестве черновых операций при обработке очень твердых и труднообрабатываемых  материалов. Однако, производительность процесса все-таки оставляет желать лучшего.