Усилитель на туннельном диоде

Усилитель на туннельном диоде

В современной аппаратуре связи УТД нашли широкое применение благодаря простоте, высокой надежности, малым габаритам и массе, а также небольшому потреблению мощности питания. Туннельные диоды изготавливают из полупроводников с большим содержанием примесей. Благодаря высокой концентрации примесей запирающий слой на переходе утончается до 10-6 см . При подаче на такой тонкий p-n-переход даже малого постоянного напряжения напряженность электрического поля в переходе достигает значительных величин (до 105 В/см). Большая напряженность поля и малая толщина перехода создают условия для преодоления электронами энергетического барьера. При этом электрон как бы исчезает с одной стороны потенциального барьера и почти мгновенно появляется по другую сторону от него. Описанное явление называется туннельным эффектом. Усиление СВЧ колебаний с помощью УТД основано на использовании падающего участка с отрицательным сопротивлением его вольт-амперной характеристики

Обычно туннельные диоды питаются от делителя напряжения, что приводит к неэкономному расходованию мощности питания. Действительно, для германиевых диодов напряжение смещения в режиме генерации равно 0,1-0,15 в, а минимальное напряжение подавляющего большинства химических источников тока составляет 1,2-2 В, поэтому и необходимо применять в цепи питания делители напряжения. При этом примерно 80-90% всей потребляемой мощности рассеивается на делителе. Исходя из соображений экономичности, для питания туннельных диодов целесообразно применять источники с возможно более низким напряжением. Выходное сопротивление делителя напряжения выбирают в пределах 5-10 Ом, и только в устройствах, где требуется наибольшая экономичность его повышают до 20-30 Ом. Отрицательное сопротивление туннельного диода должно превышать сопротивление делителя в 5-10 раз. Шунтировать столь малые сопротивления конденсаторами для уменьшения потерь высокочастотной энергии нецелесообразно, так как в ряде случаев это может привести к неустойчивой работе генератора, особенно, если режим его подбирался по максимуму отдаваемой мощности. Отрицательное сопротивление туннельного диода сильно зависит от положения рабочей точки, так что при изменении питающего напряжения на 10% нормальная работа генератора может полностью нарушиться. Поэтому при питании диодов от химических источников тока - батарей, аккумуляторов, обеспечить их стабильную работу весьма трудно. Наиболее целесообразно питать их от окисно-ртутных элементов, напряжение которых незначительно меняется в процессе работы, а в ряде случаев приходится использовать предварительно стабилизированное напряжение или применять в делителе нелинейные сопротивления в верхнем плече, стабилизирующие ток, а в нижнем - напряжение.

Резонансные усилители на туннельных диодах строить сравнительно несложно. Они могут быть выполнены, например, по схеме автогенератора, в котором коэффициент обратной связи недостаточен для возбуждения колебаний. Таким схемам присущи все недостатки регенеративных усилителей: нестабильность порога регенерации, возможность возбуждения при изменении нагрузки, сужение полосы пропускания при повышении усиления. Однако такие усилители могут работать достаточно устойчиво, если не стремиться получить от них максимальное усиление. На рисунке показана схема входной части приемника прямого усиления с ферритовой антенной. Известно, что для согласования сопротивления контура антенны с входным сопротивлением транзистора, коэффициент трансформации трансформатора, образованного обмотками катушек L1 и L2 делается много меньше единицы  Верхняя обкладка конденсатора C1 должна быть заземлена. Это приводит к тому, что напряжение сигнала на базе транзистора оказывается в 15- 20 раз меньше, чем напряжение на контуре L1C1. В схеме, показанной рис. 6 коэффициент связи выбран значительно больше обычного и отвод к базе транзистора Т1 сделан от 1/5 общего числа витков катушки L1. В этом случае контур L1C1 оказывается сильно шунтированным, полоса его расширяется и чувствительность приемника падает. Однако при подключении туннельного диода к дополнительной обмотке L3 контур частично "разгружается", его затухание и полоса пропускания возвращаются к нормальной величине. Таким способом удается получить выигрыш в чувствительности приемника в 4-5 раз. Число витков обмотки L3 выбирается с таким расчетом, чтобы затухание контура компенсировалось не полностью, и усилитель не возбуждался. Однако, чтобы получить максимальную чувствительность, нужно подойти к порогу возбуждения как можно ближе, поэтому смещение туннельного диода сделано регулируемым. Обмотка катушки L1 содержит 200 витков провода ПЭЛШО 0,15, намотанных в один слой виток к витку на ферритовом стержне длиной 110 мм, диаметром 8,4 мм с отводом от 44 витка. Обмотка катушки L3 содержит 8-10 витков провода ПЭЛШО 0,15, она намотана вблизи заземленного конца катушки L1. Недостатком предложенной схемы является то, что коэффициент перекрытия входной цепи уменьшается, так как из-за увеличенного коэффициента связи сильней будет сказываться входная емкость транзистора T1. Кроме того, к емкости контура добавится пересчитанная емкость туннельного диода. Поэтому, если требуется достаточно большое перекрытие, целесообразно туннельный диод применять с минимальной емкостью.